Recombinant spider silk matrices for neural stem cell cultures.

نویسندگان

  • Michalina Lewicka
  • Ola Hermanson
  • Anna U Rising
چکیده

Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes. Accordingly, NSCs hold great promise in drug screening and treatment of several common diseases. However, a major obstacle in applied stem cell research is the limitation of synthetic matrices for culturing stem cells. The objective of this study was to evaluate the suitability of recombinant spider silk (4RepCT) matrices for growth of NSCs. NSCs isolated from the cerebral cortices of mid-gestation rat embryos were cultured on either 4RepCT matrices or conventional poly-L-ornithine and fibronectin (P + F) coated polystyrene plates. From 48 h of culture, no significant differences in cell proliferation or viability were detected in NSC cultures on 4RepCT compared to control matrices (polystyrene plates coated with P + F). The NSCs retained an undifferentiated state, displaying low or no staining for markers of differentiated cells. Upon stimulation NSCs grown on 4RepCT differentiated efficiently into neuronal and astrocytic cells to virtually the same degree as control cultures, but a slightly less efficient oligodendrocyte differentiation was noted. We suggest that recombinant spider silk matrices provide a functional microenvironment and represent a useful tool for the development of new strategies in neural stem cell research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Spun Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation

Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained fro...

متن کامل

Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification.

Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with ...

متن کامل

Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices

Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk t...

متن کامل

Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.

The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric...

متن کامل

Aqueous Solvation Method for Recombinant Spider Silk Proteins

Aqueous Solvation Method for Recombinant Spider Silk Proteins

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 33 31  شماره 

صفحات  -

تاریخ انتشار 2012